Black Hole Astrophysics
Chapter 7.4

All figures extracted from online sources of from the textbook.
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The Schwarzschild Matric

“Sch” means that this metric is describing a Schwarzschild Black Hole.
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“SH” means that we are in the Schwarzschild-Hilbert
coordinate system.

Why bother?

Remember that we are now in curved space, but we can
sometimes for convenience still choose a locally flat
coordinate to consider the physics. The SH coordinate is
just like considering the whole surface of the Earth as a
curved surface.

The metric being diagonal also says that relativistic spherical gravity is still a radial r=force.



Some basic properties

Nevertheless, the proper distance between two closely-spaced spheres at r and r +
Ar can be computed by setting dt = dff = d¢ = 0 in the Schwarzschild line
element, yielding

1
As ~ i %i)lﬂ Ar (7.26)
where rg 1s the Schwarzschild radius
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If we integrate this as a differential, from the horizon outward, we find that the
proper radial distance from the horizon at rg to a point at r is given by the compli-
cated expression
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When r — rg we have s = 0, of course. And as r — oo, the first term dominates
and we have s — r. So, when r is large, it is a good approximation to the proper
distance, but when r gets close to rg, the differential proper distance As becomes
much larger than Ar itself (equation (7.26)).



Limits at infinity
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Passing the horizon
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7 T
P20 e NS, 20 e
/ S g i R \ / ) 0 0 0 \
0 : 0 0 0 : 0 0
(-9 ] )
r r

\ 0 0 12 0 ) \ 0 0 12 0 /
0 0 0 1r?sin?%6 0 0 0 1r?sin?%6

What's so interesting?
We know that particles can only travel on timelike trajectories, that is, ds? < 0.

Outside the horizon, gy is the negative term so we can be on a timelike trajectory if we
havedt # 0,dr =d0 =d¢p =0

Inside the horizon, it is g, that is negative! So to be on a timelike trajectory, the
simplest case would be to have dr # 0,dt =d6 =d¢p =0

This means that we can only fall toward the BH once we pass the horizon!



Coordinate Systems

1. The moving body frame (MOV)

3. Schwarzschild-Hilbert frame (SH)




The moving body frame (MOV)

In this frame, we are moving
with the object of interest. Since
spacetime is locally flat, we
have a Minkowski metric in this

case
4!

o = O O
_ O O O

0

Sch =4 0 1
(gMOV of e 0 0
0 O

and by definition the 4-velocity
(Umow)* = (¢, 0,0,0)

This frame is useful for
expressing microphysics, such as
gas pressure, temperature, and
density, but not motion.



Fixed local Lorentz frame (FIX)

In this frame, we consider some locally flat
part of the Schwarzschild spacetime to sit on
and watch things fly past. Therefore the
metric is still the Minkowski one
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but now the 4-velocity of objects become
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yvo
which is obvious since the FIX and MOV frames
are simply related by a Lorentz Transform.

It is a convenient frame for looking at motion of particles.
However, it is not unique, there is a different FIX frame for every point around the black hole.
This also means that time flows differently in different frames.



Schwarzschild-Hilbert frame (SH)

This is a global coordinate, so it
does not have the problems in
the FIX frame, there is a unique
time coordinate and a single

(r, 8, ¢) system.

For this coordinate, the metric is

the one we presented earlier
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However, in such a case
Ut
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U®
is hard to interpret.
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Which frame to use?

The usual solution to this dilemma is to employ a hybrid system that uses the
best aspects of all three. Derivatives are expressed in the global (here SH) system,
so solutions will be given as functions of (¢, r, @, ¢). On the other hand, velocity,
electric and magnetic field, and the charge/current four-vectors are expressed in the
fixed local Lorentz (FIX) system, and we usually will use the standard three-velocity

V = (V" VY V?), with components in centimeters per second, instead of U.
Finally, thermodynamic scalar quantities such as density and pressure are expressed
in the moving-body system (MOV), where the familiar thermodynamic laws and
equations of state are valid. This prescription, is sometimes called the “3-+1 system”,
and is discussed in much more detail at the end of this chapter and in Chapter 9. Its
great advantage is that variables are expressed in familiar terms and the equations
look very similar to the laws of physics that we already know here on the earth.
But how 1s the 341 system accomplished in practice? The answer 1s through
generalized Lorentz transformations. For example, let us consider the velocity. In



How to go from FIX to SH frame?
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Expressing the 4-velocity in SH coordinates
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This now becomes more convenient to use and interpret. Usy® is the 4-velocity of the

global frame and we write its components in terms of local frame parameters (Vf, Ve, V¢)




Let's examine the 4-velocity

/ Y \ We expect from our old idea of gravity that the
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Particles seen in the SH frame apparently are ‘stuck’ at the horizon and never get
across it!

But particles should fall into black holes!

This is simply due to the Generalized Lorentz Transform.



What happened?
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Consider someone falling into a black hole, the local FIX frame observes the time of the
person as dtgyx, then, for a person sitting watching the BH very far away he would
observe dtgy.

Given that dtg;x should be finite, as r - 1, dtgg =

It would take the far away observer infinite amount of time to watch the unfortunate
person falling into the hole!

This also says that any photon sent
out by the falling person would be
infinitely redshifted.




What happened?
(AFIXSH)diag i ;7'5, N ta %'%'Tsilnﬂ drgy = dl‘FIX\/l_:_r;S
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Similarly, for finite drgjx, asr = 15, drgg = 0 !
No matter how much the person moves in some instant, a far away observer would
observe him as stuck!

In the FIX frame In the SH frame

& dt , i i
Therefore combining dtgy = Flf and drgy = drpy [1.= % it’s obvious that the
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apparent velocity for an observer at infinity is zero !



The Equation of motion

In order to include gravity in the theory of relativity, Einstein reasoned that grav-
ity must be a pseudo-force, arising not from another stress-energy component, but
from the gradient operator itself (V) in equation (6.121). In other words, because
gravity occurs when matter is present, somehow matter must cause four-dimensional
space to be curved, rather than flat. This curvature then gives rise to additional terms
in the equations of motion that we interpret as the force of gravity. The addition
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In general , the equation of motion expands to
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Considering only radial motion, U? = U? = 0 and applying the relation between
Christoffel symbols and the metric (we are now working in the SH coordinate),
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Hello Gravity !
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Conserved Quantities —1-forms are useful !

Henceforth, if unspecified, all the tensor/vector components are written in
the SH coordinate
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Finally, we get, =0 Py = ymOVa’rsinG

The angular momentum pg of a particle is conserved along the trajectory!



Conserved Quantities —1-forms are useful !

Similarly, we can also find that for the energy,

dE

T-
Bt E=—m=/1—fwwﬂ

The energy p; of a particle is also conserved along the trajectory!

This constant, E, is sometimes also called energy at infinity because asr — oo, this

term goes to ymyc?.

However, since it is the same at any radius, we can use it to calculatey (r) hence the
velocity (we will see this on the next slide).

A moving body is bound to the BH if E < m,c? and unbound otherwise.



Free fall

On the last slide we mention that we can use E to calculated the Lorentz factor as
a function of radial distance r, let’s now work it out.

T
E=—pi= |1-—ymoc?

Consider a particle falling toward a black hole stating
from rest at infinity.

This means that E,, = mgc? = E(r) = /1 — %ymocz
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We see that if we drop something at infinity and assuming there is noting else in the

universe between it and the BH, then it arrives at the BH at exactly the speed of light!



Chucking stuff dlrectly at the BH

Now you might ask : "Particles accelerate
to c if we drop them off at infinity, what if
we Kick them into the BH starting from
infinity?”

Special relativity tells us that we can’t
exceed c now matter what, so somehow
the particle should still end up less than c
even if we throw as hard as we can!

Let's consider a general case in which we
don'’t specify energy at infinity, thus,

T
w=E@) = fl—fymocz

Solving this gives V' = —C\/l % (mzcz) ( 3 %)

Interestingly, no matter what E is, when r = 7,
we always get V" = —c |




Orbits

Consider the simple cases of circular orbits, again using the equation of motion
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Photon Orbits

To find the orbital radius of photons, lets consider Vqu 2 /:;_1\: = c case

g 3
This gives us 1y = 5T

i.e. for photons, the only place they can orbit the BH is at this radius.

However, we'll see later in a more
general formulism (in Schutz) that
this orbit is nowhere stable, if we
accidently kick the photon a bit, it
will either spiral into the BH or spiral
out to infinity.
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Finite mass particle orbits

< . . % , GM
For finite mass particles, we need to consider Ve = i < c case
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The ISCO

T i g fe mqc?
L i S PR TR orb 3 0

The minimum for both of these two curves happen at r = 31
This is commonly called the Innermost stable circular orbit for reasons we will see later.

At this radius, L and E are 1.5 o — The radius at which photons orbit
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However,lwe will also find that | Minimum point at 3 7 L
the ISCO is more or less a |
‘marginally stable’ orbit! If we
accidently kick it a bit toward the 20}

black hole, it will just give up and b |
fall in! | E




General discussion for particle motion

Previously, we have already found that we can calculate either free-fall or orbits by
considering E or L respectively.

For a general consideration, it is more convenient if we write both of them in the
same equation so we can discuss different the properties of the different orbits
more clearly

2 2
P? = —my2c? = gu(P)? + g1 (PT)? + goo(P?)” + goo (P?)

7" ~
/1 — ?Symocz L =py =ymeVer

For simplicity, we take 8 = /2, so P? = 0
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General discussion for particle motion

2 2 2
dr E Ts 1 L Remember that both E and L
Ll i per i T g |
cdt mgC T r< \mgyc are constant of trajectory
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We can define the effective potential as V2 (r) = ( L. %) (1 HLIEx (L) )

r2 \myc
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Then, (E) = ( £ ) — V2(r) very much like the classical E;, = Erg¢ — V !
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Behavior in different potentials V?(r) = (

L = 1 angular momentum too low to have safe orbit
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In relation to our previous analysis

Angular momentum of circular orbits
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The marginally bound orbit

The marginally bound orbit
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7.4.3.4 The Marginally Bound Orbit

There is one additional orbital radius of interest. Because €.,1, sy has a minimum at
Tisco,sH and then rises as r decreases further, there must be radius r,;, s < Tisco.SH

. where the orbital energy (equation (7.41)) rises back to the rest energy of the particle

moc? (see Fig. 7.1). This radius is given by

GM

Tmb,SH = 4(1—2 (7.44)

Between 7risco suy and r,,.sg orbits can exist, but they are unstable. Interior to
rmb.sH the binding energy is negative: more than the rest energy of the particle
is needed just to keep it in a circular orbit, making these orbits very difficult to
achieve. Like all orbits with r» < 7is.0 s, these orbits also are unstable. Generally,
all particles in this region with finite mass will spiral into the black hole, unless a
very powerful acceleration can move them into higher, safer orbits.



How stable is the ISCO?
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Taking the derivating w.r.t proper time on both sides, we get the force equation
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Force at ISCO L = v/3 angular momentum just right to be safe at ISCO
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The ISCO is the double root solution, it is at the same time the stable and unstable
circular orbit. Unfortunately for particles flying about the black hole, the result is
simply that it is unstable! Any perturbation toward the black hole and the particle

would have to say goodbye to the rest of the outside universe!
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Observational evidence of the ISCO?

Resolving the Jet-Launch Region of the M87 Supermassive Black Hole
Science 338, 355 (2012)
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The apparent singularity in the r coordinate of the Schwarzschild metric is a big
problem, especially in computer simulations that simulate gas flows around, and
into, black holes. While matter in physical space can flow easily into black holes,
matter in simulations in Schwarzschild—Hilbert coordinates never reaches the hori-
zon. Often numerical problems prevent the simulation from continuing past, say, a
hundred or so Schwarzschild times

T8 ET‘S/C

However, while strange things do happen near the horizon in the Schwarzschild met-
ric, a physical singularity is not one of them. The problem turns out to be all in the
coordinates (particularly in time, actually) that are chosen to express the geometry,
not the geometry itself.

We can see this easily by choosing a different time coordinate ', such that

dt' = dt + 'S dr
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gt~ The coordinate singularity at rs now has “magically” gone away. However, the
physical singularity at = 0 remains, as does the horizon (g;/;» = 0) at r = rg. This
form of the metric also approaches the spherical-polar form of the Minkowski metric
as r becomes much larger than rg. But, for small » we now have a new, off-diagonal
coefficient: g, = (rg/r)c that has helped remove the coordinate singularity.

The most surprising thing about this transformation is that r is still the same
radial coordinate as before; only the definition of time has changed. Yet the proper
distance no longer diverges at r = rg

rg\ /2 r\? rg\1/2
s=r (1 + —b) + rs In () I + (1 + —b)
T rs r

which has the value s = [v/2+ In(1 + v/2)| rs = 2.296 75 there. Instead, s’ now
measures the distance from the physical singularity at the black hole center out to
the radius r, not from the Schwarzschild radius. Why is the proper distance different
even though 7 is the same coordinate? The reason is that s and s’ are measured on
a “time slice” where dt = 0 or dt’ = 0. These latter two different conditions, in
two different coordinate systems, generate two different equations for the proper
distance on a time slice. Numerical simulations that use this new Schwarzschild
metric will have no trouble with matter flowing into the black hole.

The metric in equation (7.45) i1s an example where the coordinates “drift” with
time. This occurs whenever any of the g;; components are non-zero. In this case
only g/, 18 non-zero, so the drift must be in r only; it turns out that the drift here is
inward. Had we chosen dt’ = dt — [rs/c(r — rs)] dr, we would have obtained an
outgoing system. See Section 7.7 for more details.



